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ABSTRACT

A far-wing line shape theory which satisfies the detailed balance principle is applied

to the H20 - H20 system. Within this formalism, two line shapes are introduced,

corresponding to band-averages over the positive and negative resonance lines,

respectively. Using the coordinate representation, the two line shapes can be obtained by

evaluating ll-dimensional integrations whose integrands are a product of two factors. One

depends on the interaction between the two molecules and is easy to evaluate. The other

contains the density matrix of the system and is expressed as a product of two

3--_limensional distributions associated with the density matrices of the absorber and the

perturber molecule, respectively. If most of populated states are included in the averaging

process, to obtain these distributions requires extensive computer CPU time, but only have

to be computed once for a given temperature. The ll---dimensional integrations are

evaluate using the Monte Carlo method, and in order to reduce the variance, the

integration variables are chosen such that the sensitivity of the integrands on them is

dearly distinguished. Numerical tests show that by taking into account about 107 random

selections, one is able to obtained converged results. We find that it is necessary to

consider frequency detuning, because this makes significant and opposite contributions in

the two band-averaging processes and causes the lines to be asymmetric. Otherwise, the

two line shapes become symmetric, are the same, and equal to the mean of the two shapes

obtained including the frequency effects. For the pure rotational band, we find that the

magnitude of the line shape obtained from the positive line average is larger than that

obtained from the negative line average for w > 0 and vice versa for w < 0, and their gap

increases as the frequency displacement from the line center increases. By adopting a

realistic potential model and optimizing its parameters, one is able to obtain these two line

shapes and calculate the corresponding absorption coefficients which are in good agreement

with labor.atory data. Also, this same potential yields good theoretical values for other

physical properties of the dilute H20 gas.
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I. INTRODUCTION

In previous papers, we have presented the theory for the calculation of far-wing hne

shapes and the corresponding absorption coefficients for interacting pairs of molecules. 1-3

Assuming only the binary colhsion and quasistatic approximations, we have shown that by

using the coordinate representation to describe the orientation of each molecule before and

after the transition, we are able to reduce the problem to the calculation of

multi-dimensional integrals. The dimensionality of the integrals depends on the type of

molecules involved; specifically for two hnear molecules (e.g. CO2--CO 2 or CO2-N2) the

dimensionality is 7, while for one asymmetric top and a linear partner (e.g. H20-N2) it is

9. For the first case we were able to obtain converged results with a sophisticated

interaction potential using conventional integration methods. 1 However, for latter case, we

had to use the Monte Carlo method. 3 This system is important in atmospheric

apphcations, where we have shown that the absorption (known as the "foreign continuum")

is in good agreement with experimental results. 3 Because the absorption by H20-H20

pairs (the "self continuum") is more important, we would hke to extend our theory to the

case of two interacting asymmetric tops; the dimensionality in this case is 11, thus

implying a big challenge to obtain converged results. In a previous paper, we have shown

that by considering an interaction potential containing cyclic coordinates, the

dimensionahty is reduced to 7, and one can obtain converged results. 2

One goal of the present paper is to remove this restriction and calculate the

far-wing line shape for H20-H20 using the most general interaction potential. To

accomplish this goal, it is necessary to modify the Monte Carlo routine used previously

such that the sensitivity of the integrand on the integration variables is clearly

characterized. A second goal is to investigate the asymmetry of spectral lines; in order to

do this, one has to carry out band averages in a more sophisticated way and consider the

frequency detuning effect in the line shape calculations. Based on the present work, one

can conclude that the band-average line shapes are asymmetric and, in addition, one would



expect different line shapes for different bands.

In order to reduce any unphysical effects in calculated results, we carry out all

numerical calculations based on formulas which satisfy the detailed balance principle

exactly and have a higher accuracy in the short-time limit. 4 As expected, this increases

the difficulty because the formulas become more complicated. Thanks to great advances in

computers made in recent years, we are able to overcome this obstacle successfully.

Finally, we utilize a realistic interaction potential applicable for the dilute H20 gas that

not only gives good agreement between theoryand experimental temperature-dependent

second virial coefficients and differential scattering cross-sections, but also yield absorption

coefficients that are in good agreement with the experimental self continuum data. We

note that because the theory has a sound physical basis, we expect that theoretical results

calculated at lower temperature, which would be extremely difficult to obtain

experimentally because of the lower vapor pressure attainable, are valid.

The paper is organized in the following way. In Sec. II.A, we present the

expressions for the correlation functions and the spectral densities which satisfy detailed

balance exactly. In Sec. II.B, we introduce two band averages and the corresponding line

shape functions. The application of the coordinate representation for the system consisting

of two asymmetric tops is presented in Sec. II.C. The main purpose is to introduce the

density matrices of the absorber and the perturber molecule, which are three dimensional

distributions, and to show how to calculate them: This is the most costly calculation in

the present study and the results obtained are used to get the line shapes later. In Sec.

II.D, we discuss how to calculate the frequency detuning correction. The method is similar

to that used to calculate the line shapes without this correction, except one has to

developed a new technique to deal with the integrand containing a derivative. The

necessary generalization of the Monte Carlo method to ll--dimensional integrations is

discussed in Sec. II.E. In Sec. II.F, we discuss a realistic interaction potential which gives

good agreement with various molecular data measured in the dilute gas phase, including



the absorptioncoefficient. Then in Sec. II.G, we apply the theory to obtain two line shape

functions numerically for several temperatures and discuss some of their general features.

We use these results to calculate the corresponding absorption coeffidents and compare

those obtained in the 300 - 1100 cn °I spectral region for the room temperature with

experimental results. In Sec. III, we discuss the results obtained and the conclusions drawn

from the present study.

The present work, together with the previous calculations for simpler systems,

constitute a general formalism in which one can obtain from first principles the far-wing

line shapes for any colliding pair for which a realistic potential is available. Conversely, if

experimental data for the line shape or the corresponding absorption coefficients are

available, one can use this formalism in order to test the accuracy of the potentials.

II. THE GENERAL FORMALISM

A. Symmetric Correlation Function and Spectral Density Which Satisfy the Detailed

Balance Principle

The absorption coefficient a(w) of a gaseous sample with a unit volume is given by

a(W) = _ n a wtanh(_w/2)[F(w) + F(-w)], (1)

where n a is the number density of absorber molecules and the spectral density, F(w), is the

Fourier transform of the correlation function C(t). One separates the total Hamiltonian H

into two parts: one commutes with the internal coordinates of the molecules while the

second does not. We note that this distinction of H usually coincides with the division of

the interaction into two parts: Vis o and Vani, the isotropic and the anisotropic interactions,

respectively. Accordingly, the total Hamiltonian H is decomposed as

H = H a + H b + Vis o + Van i - H 0 + Vani, (2)

where H a and H b are the unperturbed Hamiltonians of the absorber and the bath

molecules, respectively. In practice, for atmospheric applications where the gas pressures

!



are low, one can introduce the binary collision approximation and focus on a much simpler

system consisting of one absorber and one bath molecule. For simplicity, we don't

introduce new symbols for the two-molecule system.

It has been shown that one is able to express C(t) in the t -_ 0 bruit, which is valid

to order t _, as4

_,, -, ½Lat _---C(t) = n b v l rJt(e 4PbPa p)t pisoe--_V'ani [e-iLanit(e-½Lat p_-_bpa p)]}, (3)

where nb is the number density of the bath molecules, _ = Tr[e-_H°]/Tr[e -flH] and the

Liouville operators L a and Lan i corresp-ondingt0 Ha and Vani, respectively, have been

introduced. For later convenience, we can introduce a symmetric correlation function C(t)

(-- C(t + ih47/2)) defined by

i 1 I t
C(t) = n b y Tr{(e_Lat p_ b Pl _ Pa_

..

x Piso e- _ani[e-iLanit(e- ½Lat p_ b P! P Pa_] e-- _Vani}. (4)

From these expressions, it is easy to verify that C(-t) = C(t + i_) and C(-t) = C(t)

which guarantees both of them satisfy the detailed balance principle. 4'5

By expressing C(t) explicitly as summations over indices i, j, i' and j' where each

represents all the quantum numbers necessary to specify the energy levels of the absorber

molecule, one is able to write C(t) as
....

-¼ 1
C(t) = _ _ e_(a_Ji+Wj'i')t nb V Trb{<jJp a _pa _ p_bli>

• ..

.. ,t.'

1 ! 1 eiVani t e__ani. <i J- _-_ani e-iVani trigor Ji'> <i'J_ p_ _p_aJj'> <j'J Jj>}. (5)

In the above expression, _ji = Ej - E i and the the subscript b of trace denotes the trace

over the remaining variables including all magnetic quantum numbers. We assume that

the interaction between two molecules does not depend on their vibrational quantum

numbers. As a result, in Eq. (5) the vibrational quantum numbers of i and i' are identical

and those of j and j' are also identical, but the former could differ from the latter. By

choosing the Z axis of the space-fixed frame along the separation between the two
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molecules, the interaction Vani(r , _a, rib) depends on the orientations of the two molecules

represented by fla and fib, respectively, and on r, the distance between the centers of mass,

which can be considered as a parameter since the translational motion is treated classically.

In Hilbert space associated with the internal degrees, one denotes the eigenvalues and

eigenvectors of Vani(r , Qa, Qb) by GO. and I(>, respectively; thus

Vani(r, ha, fib)l(> = G¢Cr)l (>. (6)

Then, by performing the Fourier transform of the correlation function C(t) and carrying

out an integration over r (i.e., the classical ensemble average over r which is valid within

the quasistatic approximation), one is able to obtain the symmetric spectral density F(w),

1 _ ,[_-_(_j_ + ,i,)]. (7)
o. .,.,

1j 2j

The explicit expression for _ij;i,j,(_) is given by

_ij;i,j,(w) = _ ItCh(w)_ _ _ <_ljib> <jib[P] t_fp_P4"P-bb[iib><iibl (>
_ {m} ib i_

1 • |

x <(li,i_> <i,il_[ p4_b pat # pIlj'i_> <j'i_l 77>, (8)

where ib and i_ are indices used to specify the states of bath molecule and {m} indicates

the summation over all magnetic quantum numbers. In the above expression, Hem (w) is

defined by

- I I1 e- _v'iso(rc) - _[Gc,(rc)+ G_(rc)]/2
Hc,_(w)- nb v 4_rc2 i G_(rc)i , (9)

d r
where G_(r) denotes _]_[G¢( ) - G_(r)], and r c are roots of the equation

c_(_) - G_(_)= ,,.,. (10)

We note that in Eq. (7), the summation indices i, j, i' and j' exclude their magnetic

quantum numbers since the summation over them has been carried out. The functions

_ij;i,j,(W) introduced above are symmetric for the exchange of indices {i j} _ {i'j'}.

Meanwhile, with respect the exchanges {i j} -_ {j i} and {i'j'} -_ {j'i'}, it is easy to verify

that _ji;j,i,(-w)= _ij;i,j,(w). 4 In terms of F(w), the absorption coefficient a(w) becomes

/ •



• 8

a(w) = 8_r2 sinhC_/2)F(w). (11)_]_n a w

Finally, it is worth mentioning that F(w) = e-/_'W/2F(w) and F(-w) = F(w). The latter is

required by the detailed balance principle.

B. The Averaged Line Shapes with the Frequency Detuning Correction

We consider a band consisting of transitions between states with two vibrational

quantum numbers specified. For simplicity, we designate a pair of i and j (i.e., a line) by

the symbol k. If necessary, we use symb0is-k÷ and k.t0 distinguish a positive resonance

line with Ej - E i > 0 and a negative resonance one with Ej - E i < 0. Then Eq. (7) can be

expressed as

1 {_ _ _k÷;n n ÷= + + X + - (12)
k÷n k-n

where Wk. (__ I wjil) is positive. We note that in Eq. (12) we have not explicitly

characterized the symbol n by + or - yet because the band of interest has not been

specified. For the pure rotational band resulting from transitions without changing the

vibrational quantum number, both the symbols n in two terms of Eq. (12) could be n÷ and

n. because there is no link between the choices of k and n. Meanwhile, for a vibrational

band, k÷ or k. is always associated with n. or n., respectively. In this case, i and i', and

also j and j', share the common vibrational quantum numbers and, in general, these two

different vibrational quantum numbers determine whether k (i.e., a pair of i and j) and n

(i.e., a pair of i' and j') belong to the positive or the negative resonance. Therefore, for the

vibrational bands the symbol n in the first term of Eq. (12) should be understood as n. and

those in the second term as n_. This custom is applicable for the equations following.

On the other hand, by introducing two common line shape functions X÷(w) and X_(w)

one can express F(w) as

1 {_. pkl/_12 1 }÷(w- wk. ) + 1 _'.(w + Wk.)]}, (13)
k÷

!
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where _ (_= #ij} is the reduced dipole matrix element and Pk = _" In order to find

expressions for X+(w) and X_(w), one performs the Fourier transform for Eqs. (12) and (13)

and compares the results to their time-domain versions. As a result, the following

equation has to be satisfied:

XX +XX
k+n k-n

-- _,_'[lw-_ X÷(W)] _ Pk[#k[ _ei03k*t + _[1___ X_(w)] _ Pk[_[ 2e'-i03k*t, (14)

k* k-

where for simplifying the notations we use thesymbols _k÷;n(t), _k.;n(t), _,[1__ _,(_)], and

~ ~ 1 _÷(w) and 1_'[lw-_ X_(w)] to represent the Fourier transforms of Xk÷;n(O3), Xk.;n(03), _ ,

X_(03), respectively. Furthermore, one assumes that one can separate Eq. (14) into two

equations, one associated with a summation over the positive resonance lines and the other

over the negative resonance lines,

_[I_-T x.(03)] = _ _ _k,;n(t)e½(03k++03n)t / _ psl/_l 2 ei03s.t, (15)
k+n s÷

and

_[_ J'_(,.,.,)]= }_}_'_k_;,,(')e-"}(_k'-_,,)' / _ P,I_-I_e--i".',:.
k-n s÷

(16)

Then, with Eq. (15) it is easy to obtain an expression for _.[1_._ _÷(03)] which is valid in the

short-time limit:

k÷n

(17)

where N is the normalization factor defined by

N=_ ,Okl/_l2,
k÷

(18)

and _ is the average positive resonance frequency defined by

_= _, p_,l_l 2_.. (19)
k*

By performing the inverse Fourier transformation, one is able to derive the expression for
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X,(w) valid at I_1-_ oo

k÷n

Similarly, one can derive

k-n

In Eqs. (20) and (21) the arguments of functions depend on the summation indices

and this results in difficulty to obtain }÷(w) and _'.(w) directly. In practice, one prefers to

derive an expressions for X÷(w) and _'.(w)in-which thesummations are performed over

functions whose arguments are independent of the summation indices. For this purpose,

the frequency detuning approximation must be introduced. As an example, we consider

Eq. (20). With the Taylor series expansion of _k÷;n[M--_(tdk+ -_ tdn) "4- _] over W, one can

approximate _÷(w) as

_.(_)=_.(_)+_,_y___-_. +_o)]_.;o(_), (22)
k÷n

where

k÷n

where

k-n

and Xk÷;n(w ) = d_,k.; (w)/dw. In the left side of Eq. (22), the first term ,_÷(w) comes from

simply ignoring the frequency detuning and the second term is a correction. We note that

in our previous study, 6 a shift parameter was introduced to treat the effects from the

frequency detuning. However, it is better to calculate the contributions from the second

term directly because it turns out that, except for some simple cases, the previous method

could introduce numerical errors. Similarly, one can approximate __(w) as

tv,

k-n
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Using the symmetries _k_;n (-w) = _k÷;n+(_d) and _k.;n÷(--_) -- _k.;n..(_d) (the latter is

appropriate for the pure rotational bands only) mentioned above, one can show that

_-_1 =_.(_),
and

(26)

z_-_) =z.(_). (27)

If onedoesnotdistinguishthe twoshapesX.(w)andX_(w)intheexpressionforF(w)

given by Eq. (13) and replaces them by only one shape X(w), one can pursue a similar

derivation for X(w) and obtain ....

- Y. ÷ (28)
kn k

A simple version X(w) defined by

,i'(,,,)= ,g _._ 2k;n(,_)/ _:PkI_l _, (2o)
kn k

can also be introduced. In this case, both X(w) and X(w) become symmetric and, in

addition, up to the first-order approximation, X(w) is the same as X(w) because there is no

net contribution to X(w) from the first derivative term of the Taylor series expansion of

_k;o[_-_ + _n)]"
In summary, we note that within this formalism no matter which functions are

chosen for the line shape, in terms of them the symmetric spectral density F(w) always

satisfies the detailed balance principle. The formalism outlined above was developed

several years ago. 6 However, at that time, except for the simplest system, such as CO 2 -
..

At, to calculate converged line shapes for systems of interest in atmospheric applications

was formidable. The main obstacle was the calculations involving a diagonalization

procedure of the anisotropic potential which exhausts computer resources very quickly.

C. The Coordinate Representation

Recently, we have developed a formalism based on the coordinate representation in

t,p
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which the eigenfunctions of the orientations of the system are chosen as the complete set in

Hilbert space. 1"3 The advantage of introducing this representation is that the

diagonalization of the potential becomes unnecessary and the main computational task is

transformed to the carrying out of multidimensional integrations. For systems consisting

of two linear molecules, or one linear and one asymmetric top molecule, or two asymmetric

top molecules, the dimensionality is 7, 9, and 11, respectively. In addition, we have shown

that using the Monte Carlo method, one is able to evaluate up to the 9-dimensional

integrations required for systems such as H20 = Nr3-Combined with techniques developed

recently to handle sophisticated potential models, 2 one is able to implement realistic

potentials for these systems and derive accurate, converged results for the far-wing line

shapes and the corresponding absorption coefficients.

In the present study, we are interested in a system consisting of two H20 molecules.

In order to reduce any unphysical effects, we base our study on formulas which satisfy the

detailed balance principle exactly and have a higher accuracy in the short-time limit.

Besides extending the Monte Carlo method to evaluate ll---dimensional integrations

required for line shape calculations, we would like to answer some questions in depth. We

want to know whether the line shapes are asymmetric and if they are, to find out the origin

of the asymmetry. In other words, we want to know whether it is necessary to introduce

two line shapes instead one, and why they differ from each other. As expected, in

comparison with our previous studies, this introduces extra difficulties. Fortunately,

thanks to the coordinate representation and the Monte Carlo method as two powerful tools

to perform averages, and also to great advances in computers made in recent years, we are

able to overcome these obstacles and we make significant progresses.

The details about the coordinate representation and the Monte Carlo method have

been presented previously 1"3 and are not repeated here. We only report new features.

Since we want to carry out band averages in a more sophisticated way, we have to

introduce a positive and a negative resonance dipole operator in the Hilbert space of the
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> <
absorber molecule denoted by #m and #m, respectively. The former is defined by

>
#m- _. <il#mlJ> li><Jl, (30)

Ej_Ei

and the latter by

<:
#m- _ <il#m[J> li><J[ • (31)

Ej_:E i

We note that for the vibrational bands j denotes a higher vibrational quantum number

than i in Eq. (30) and vice versa in Eq. (31). Then, with Eqs. (8) and (23), one can rewrite

+(w) as a summation over _ and

= ½X (32)

where G_) are defined by

_> 1 1 1

m

and defined by

> I 1 > 1

m

for the pure rotational bands and for the vibrational bands, respectively. For simplicity,

we will only present formulas applicable for thepure rotational bands and simply mention

differences between them and their vibrational analogs. In the expression for X÷(w) given

by Eq. (39.), the summation terms are products of H_(w) and G_). The former are

functions of w and their values depend on the interaction potential between the two

molecules. The latter are common for all frequencies and their values are independent of

the potential. With the coordinate representation, no matter how complicated the

potential is, to calculate values of Hc,n(w ) is straightforward since the potential is a

diagonal operator. On the other hand, to obtain the G _c._) involves a lot of calculations,

because they contain the density matrices which are differential operators. Fortunately, for

a given temperature, these calculations need to be done only once since results obtained are
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applicable for all potential models. Thus, we can calculate them and to store them in an

input file.

In the coordinate representation, the basis functions ](> are nothing but the direct

product [6(fl a - flat.)> ® [6(fl b - Ob(.)> where the notations of [6(fI a - fia0> and [6(fl b -

flbC,)> are used to represent specified orientations of the absorber and the perturber

molecules, respectively. Accordingly, one can separate the dependence of G _¢_) on the

absorber and on the perturber molecules and express it as the product of Gac ¢.q) and

Gb¢ _), .....................

> 1

m

I  b¢)l l  (nb - n )>l
4

-=Ga(¢_) _ Gb¢¢_). (35)

For the vibrationalbands, the dipolemoment operator #m in Eq. (35) isreplaced by #m"

In comparison with Gac c._),the expressionsfor Gb¢ ¢,_)are simpler because they do

not contain the dipoleoperator. For the linear,symmetric top, and asymmetric top

molecules, the explicitexpressionsfor Gb¢ _) have been presented and the corresponding

profileshave been discussedin our previous papers _-3and we do not repeat them. With

respectto Ga¢ _), one has to derivethe corresponding expressionsvalid for the linear,

symmetric top, and asymmetric top molecules, respectively.We do not present allof

them, rather only the lastand the most complicated one applicablefor H20. It iswell

knownZ'S that the wavefunctions of H_O, ljrm>, can be expressed in terms of an expansion

ofsymmetric-top wavefunctions ljkm>,

lj m>=X kr ljkm>

k

J --k '
= _ Ukr [(-1) m (2J8_21)½ DJm,_k(a, _, "y)], (36)

k

where Dm,k(Ja,/_,"y)(= e-imadJ,k(_)e -ik'_)isthe rotationalmatrix. With Eq. (36),one

isable to express Gac _I as,

r .....

/
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L ÷ L
Ga¢ ¢.TI,= _ _ AXE, DE,K,(a¢ Ca), _( O1)' 7(Cm) ),

L KK'

where a c_), B(_), and 7c _) are the three Euler angles used to represent a rotation

resulting from two successive rotations, i.e.,

(37)

s( = R-'(% s( (38)

and the summation index L = 0, I, 2, ...; both indices K and K' run from - L to L. In

L ÷
the above expression, the coefficients AKE , are given by

L÷ 1 1-FL-FK
AKK' = 64_rSN (-- 1) _ _ (2jl+l)(2j2+l).,/grgr2 e ¼_E(Jt'?'I)+E(j2'I"2)]

jl?'l j27"2

., , ., ,
{J 1W1}÷ J2T2

= {_ (-I) k U_Irt Uk_2K r2
k

(_ 1)J_+J_ V,(2jL+I)C2j_+I) e- _[E(j_,_'_)+E(j;,r_)] W(j_. J2 JLj,,1 L)

C(J, J2 L, k K-k K)}

-Jl_k'TT J I J _k)
x {_ (--"_k'+K' r_ Uk'_ r_. C(j_ j_ L, k'+g' K')}

k'

{_ UnlrlJI U jl,nil.IC(jlj_,nl0n,)}x {_uJ2r2, Uj2r'` 2C(j21 j_'n`0n`)}' (39)
X

nI n 2

where E(j,_') are the energies of the state labeled by the quantum numbers j and _', gr is its

nuclear spin degeneracy factor, C(ji J2 L, k K-k K) is a Clebsch--Gordan coefficient, W(j_

J2 J_ Jl, 1 L) is a P_cah coefficient, and the summation over j_ and r_ indicated by a symbol

{j_r_}÷ is hmited to a range with E(j_rL) > E(jtr,). We note that for the vibrational bands,

L ÷
the expression for AKK, is similar to that given above except that the states labeled by "' 'j_r_

and "' 'J272 and the states labeled by jl_'t and J272 belong to a higher and a lower vibrational

level, respectively. In addition, another limitation of E(j_r_) > E(j2r2) is also enforced in

the summations.

With Eqs. (37) and (38), one can conclude that Ga(ca) are three--dimensional

distributions over three Euler angles used to represent a rotation of the molecule from the

initial orientation to the final one, labeled by ( and % respectively. With respect to }_(w),

/
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one can introduce Ga(c._) and write down similar equations to Eqs. (32) and (35).

L" L
Meanwhile, Gac c._) can be given in terms of AKK, and DK,x, (a cC,_, tic C._I, "Y(¢_ ) in the

L" L ÷
same way as shown by Eq. (37). The expression for Axx , is almost identical to AxE, shown

by Eq. (39), except that the summation over j_ and r_ is hmited to a range with E(j_r_) <

E(jir,).
L ÷ L"

Although the calculations of Axx, and AKK, are straightforward, there are many

summation loops involved. Usually one introduces a cut--off Jmax to exclude less populated

states. It turns out that as 3maz increases;not only moreCPU time is required to calculate

L ÷ L"
each Axx , and Axx, because the ranges of loops become larger, but also the number to be

evaluated increases quickly. Fortunately, one does not need to calculate all of them since

some are identical and others are zero. For H20 , due to the symmetry of U jkr' all the

L ÷ L-
coefficients AKK , and AKx, are zero unless their indices K and K' have the same evenness or

L + L +
oddness. In addition, for the non-zero coefficients there are symmetries AKK , = A_K_K,,

L" __.A L- L + L"A_K' -K-_" and AKK , = AK, K. As a result, if one introduces a cut--off Jmax = 23 (which

is the highest angular quantum number of the initial states listed in the pure rotational

L ÷ L"
band of the HITRAN 92 databaseg), there are 18424 values of AKK , and 18424 of AxK,

needed to be evaluated. If one uses an even higher cut---off Jmax = 26, these numbers

become 26235. By utilizing a dozen workstations, we are able to manage the latter in less

than two days. We note that to obtain these coefficients is the most costly calculational

part in the present study.

L ÷ L- 4
After all Ax_ , and Axx , are available, we can easily calculate Ga¢ C._ and Gac _,_

which are three-dimensional distributions over the Euler angles a_ c._), tic c._l, and 7c ¢,_.

In cases where no confusion results, the subscripts of these Euler angles are omitted.

However, it is better to express them as distributions over their two sensitive variables

and u (= (a -}- ?)/2) and one insensitive one v (- (a- 7)/2). The explicit expression for

Gac ¢_ used in the numerical calculations is given by
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, L" dLK,(B)

L KK _

= {COS[(K%K')U]COS[(K--K')V]-sin[(K-{-K')u]sin[(K--K')V]}, (40)

where the ranges of the indices L, K, and K' are from 0 to 2jm_, from 0 to L, and from - L

to L, respectively; _KK' = 1 for K = 0, and _KK' = 2 otherwise. The expression for G_c Cr_

L + L"
is similar to Eq. (40), except a replacement of AKK, by AKK,. However, due to the

L ÷ L" +
symmetry AKK , = AK, K mentioned above, Gac ¢._)(B, u, v) does not differ from Ga(¢,_) (B, u,

v) significantly. In fact, it is easy to show that

Ga( C,_!(B, u, v) = Ga(C._) (B, u, -v). (41)

This means that with respect to the sensitive variables/? and u, they have same

distribution patterns. Meanwhile, with respect to the insensitive v, one is the others'

mirror image.

Because Ga(¢_) (B, u, v) and Ga(c._) (_, u, v) are three-dimensional, it is impossible

to plot their profile in one figure. We calculate several two--dimensional distributions of

Ga(¢_) (a, _0, "Y) over the Euler angles a and 7 at 296 K obtained with the fixed/_0 = 5, 22,

38, and 50 degrees, respectively, and present their corresponding three-dimensional plots in

Fig. 1. From the figure, one can easily see that the magnitudes of Ga(c._) decreases very

fast as/_0 increases. More specifically, for B0 = 22, 38, and 50 degrees the magnitudes

decrease by about one order each. In addition, these Ga(¢_) exhibit symmetry with respect

to the axes (a + 7)/2 and (a- 7)/2. In order to show the profile of Ga(c._ at 296 K over

the two sensitive variables fl and u, we calculate its average over v and present the

resulting two-dimensional distributions in Fig. 2. One has to imagine that the profile

shown in Fig. 2 extends along another dimension, i.e., the v axis which is perpendicular to

the B-u plane and is missing in the figure. Furthermore, the range of extension along the v

axis varies from the minimum 0 at u = 0 and 2_r to the maximum 2_r at u = r. As shown

in Fig. 2, there are five sharp peaks located along the u axis at u = 0, r/2, _, 3r]2, and 2_,

respectively, and they are symmetric with respect to the plane u = _r. The magnitudes of

/
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these peaks decrease very fast as B increases. We note that in contrast with Fig. 1, a

logarithmic coordinate is used to plot the magnitudes. From Figs. 1 and 2, one can

conclude that the peak at u = _r is dominant. We do not present the profiles of Ga(¢_) for

other temperatures, but simply mention that they have similar patterns, but the peaks

become lower and wider as the temperature decreases. On the other hand, it is

unnecessary to present similar figures for Ga¢ ¢.n) because one can easily obtain them from

Figs. 1 and 2. In fact, Figs. 1 and 2 are also applicable for Ga(¢._) except that one has to

switch the labels a and "y in Fig. 2. Finally, we note that because Ga(¢,_) (_, u, v) and

Ga(¢_) (_, u, v) are independent of the potential, it is wise to calculate them first and store

them in files. Then, when one carries out repeated calculations for X.(w) and l.(w) to

optimize the potential models, one does not need to evaluate the values of Ga(¢_) (/_, u, v)

and Ga(_._) (B, u, v) again. In addition, using the interpolation method one can easily

obtain their values for a random selection of _, u, and v from these input files. Otherwise,

one has to independently evaluate them about 10 _ times in the Monte Carlo calculations.

D. Contributions from Frequency Detuning

So far, our discussion has been focused on how to apply the coordinate

representation for calculating ,r÷(w) and ,_.(w). In order to calculate X÷(w) and _'_(w), one

has to go further by adding contributions from the frequency detuning. We briefly explain

a method used to obtain the second term of Eq. (22) associated with X÷(w). In comparison

with evaluating the first term X÷(w), the only additional obstacle is that the integrand

N,

contains a derivative Xk÷;n(W ). In practice, except for special cases in which analytic

expressions for this derivative are available, to evaluate values of _'k÷;n(W) is much more

difficult than _k÷;n(W) because a numerical subroutine is required to obtain the former from

the latter. Given the fact that there are about 107 random selections in the Monte Carlo

calculations, this means that this subroutine must be called 107 times. Fortunately, except
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for this part, the other parts of the second term do not depend on the frequency.

Therefore, it is better to reverse the order of the derivative and the summation (i.e.,

integral) operations. In other words, instead of _ _ _ [_- _(_÷ + wn) ] Xk÷;n(W), we can
k÷n

calculate a new term given by _ _ _ _- _(_÷ + Wn) ] _k÷;n(W). The results obtained are
k÷n

a function of the frequency represented by a set of values of the integrations and a set of

corresponding frequencies. Then, with the numerical subroutine, one is able to obtain the

derivatives which are just the second term we want to calculate. As explained above, the

subroutine is called only once. With this technique, the costs to calculate the second term

of Eq. (22) is comparable to the first.

The same method used for X÷(w) explained in Sec. II.C is also applicable for

evaluating this new term. We do not repeat a detailed discussion, but simply mention

L ÷
things which are different. In this case, a new set of coefficients BKK, can be introduced

L ÷
whose expression is almost the same as AKK, given by Eq. (39) except a factor of _w-

½[E(j_r_) - E(jlrl) + E(j_r_) - E(j2r2)]) is inserted into the inside of summation loops over

the indices Jl, rl, J2, r2, J_, r_, j_, and r_. Similarly, one can introduce a set of coefficients

L" associated with the second term of Eq. (24) for X.(w) whose expression is the same asBKK,

L ÷
BKK,, except the summation over j_ and 1"_is limited to a range with E(j_r_) _ E(jl_'I). We

L÷
L ÷ L ° L÷ L" have similar symmetries BKK,note that in comparison with AKK, and AK_,, BKK, and BKK,

L ÷ L" _ B L" L÷ L" Then, one can introduce two- B_K_I, and BxK, -K--K" except BKK, -- -- BE, K.

L÷ L" respectively, and storethree-_mensional distributions associated with BKK, and BKK, ,

their values in two input files the same way as Gac _ (B, u, v) and Ga_ c,_ (B, u, v).

Finally, by comparing these two distributions, their patterns are.closely related each other

as shown by Eq. (41) except one has to add a minus sign on the left side since their values

become opposite.

L ÷ L" requires considerable CPU time, and theAs expected, to evaluate BKK, and Bxx,

L ÷ L"
costs are approximately the same as for A_x , and AKK,. In fact, for specified L, K and K',
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one does not need to calculate the four coefficients separately and one can evaluate all of

them simultaneously.

E. A Monte Carlo Calculation of l 1-Dimensional Integrations

As an example, we explain how to calculate X÷(w) from Eq. (23) in detail. In the

coordinate representation, the summation of H_(w)G _ over ( and 77becomes a

ll--dimensional integration of Hc,_(w)G _c._ over the Euler angles flat,, 7a_, abe, fibS, 7bO

aa_, fla_, ?a_, abe, fibs, and 7b_ in which the first five (including aa_ - 0) specify the initial

orientations of the system and the last six specify the final ones. We note that due to the

rotational symmetry of the whole system, one can always assume aaC' - 0. For such high

dimensionality, the Monte Carlo method is the only way to evaluate the integrals.

It is well known that in the Monte Carlo computation, it is important to distinguish

the sensitive and insensitive variables of the integrand, and to incorporate this into the

integration variables since this enables one to tailor the important sampling and to reduce

the variance dramatically. In the present case, the integrand is a product of H_(w) and

G_I. With respect to their variables, the former is a smooth function as shown by Eq.

(9), but the latter's values vary wildly and could differ from each other by many orders of

magnitude. This means that the sensitivity of integrand is mainly determined by G_),

or more specifically, by Ga( _1 and Gb( C._- We note that Ga( _ and Gb( _ depend on

relative orientations between the initial and final positions of the absorber and disturber

molecules, respectively. Therefore, it is proper to represent the final orientations of the

system labeled by _ in terms of the body-fixed frames instead of the space-fixed frame.

The body-fixed frames introduced here are those attached to the two molecules at their

initial orientational positions. For the asymmetric-top molecule, one chooses a_, fl_, 7_,

a( c,_, tic c,_, and "h _ instead of a_, fl_, ?_, o_, fl_, and 7_ as variables. However, similar

to the behavior of Gbc _1 explained in our previous study, 3 the sensitivity of Ga_ c,_ on its

two variables a(_l and "_(c,_ is interwoven such that neither is a sensitive or insensitive
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variable, but their combinations u¢ _), and v¢ c,_) are. Therefore, in order to well

characterize the sensitivity, a replacement of _¢ _), Pc _), and ?c _) by B¢ _), u¢ _), and

v(_) as variables in Ga(_) is appropriate. The same conclusion is also true for Gb(_).

This is a further step necessary to evaluate ll-dimensional integrations because, in

comparison with ? or 9-dimensional ones, not only the dimensionality becomes higher, but

also the distributions of the integrand become more nonuniform. However, in order to

incorporate these new choices for the integration variables, one has to pay extra attention

to their ranges. More specifically, since u¢ _) varies from 0 to 2_ and v c_) varies from -

u¢ c,_) to u c_ when 0 < u < _ and from u¢ _ - 2_ to 2_- u cc,_) when _r < u < 2_, the

integration volume becomes a lozenge-shaped area. Because the algorithm VEGAS 1° is

designed for carrying out integrations over rectangular volumes, one cannot incorporate the

integration variables directly. Therefore, we have modified VEGAS such that the new

version enables one to evaluate integrations over a volume containing a lozenge-shape

area. Then, with respect to the sensitivity, the dependence of integrand on all integration

variables is well characterized. This enables one to fully exploit the power of the Monte

Carlo method. As a result, numerical tests show that with a few more random selections

than before, one is able to evaluate the ll-dimensional integrations successfully.

The above discussion is also applicable for evaluating other ll-dimensional

integrations, i.e., those for X_(w), and for the frequency detuning correction terms of X÷(w)

and __(w) because their integrands have similar features. Numerical tests show that with

the modified version of VEGAS, we are also able to evaluate these as well.

F. Potential Models

Based on the progress mentioned so far, we are able to calculate converged line

shapes for H_O - H20 without or with the frequency detuning correction, i.e., X÷(w) and

X_(w), or X÷(w) and X.(w), from potential models provided unless they are too complicated

(e.g. those consisting of several decades terms and parameters). There are several potential
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models available in literatures, such as HF 11, CI 1_, Watts 13, RWK114, and RWK2 model 14.

We have tested some of them to calculate the line shapes and the corresponding absorption

coefficients. Unfortunately, it turns out that the results obtained from these models

predict too much absorptions in comparison with experimental data. It has been shown in

our previous study 2'3 that the far-wing shape is very sensitive to the angular gradients of

the potential. The reason is that contributions to the line shape come mainly from energy

contour areas at which large angular gradients of the potential are exhibited while the

potential values themselves are relatively sm_ll or even negative. We expect that such

features would not fully manifest their effects on other physical measurements on which

these models were developed. Therefore, the failure of these models is not surprising.

As an alternative, we assume that the potential for H20 - H20 consists of a

Coulomb interaction represented by a site-site model, a short range repulsive interaction

represented by another site-site model, and an isotropic attractive dispersion interaction

proportional to-1/r 6. For each H20 , there are two positive point charges + q located at

the H atoms and one negative point charge - 2q at a position along its symmetry axis a

distance d from the O atom. (A positive value of d means the charge - 2q is located on the

same side as the center of mass.) In addition, we assume that there are three repulsive

force centers: two located at the two H atoms and one at the O atom, and the repulsive

interactions have a form Aij e- riJ/PiJ, where rij are distances between force centers, and

Aij and Pij are adjustable parameters. Accordingly, the potential V(r, 12a, 12b) considered

here is given by

V(r,,',a,,',,,)= }: + }:
rij

iEa jEb iEa jEb

and it contains 7 adjustable parameters: Aoo , Poo' AoH' P0H' AHH' PHH' and B. The values

of q - 0.60 (a.u.) and d - 0.4991 (a.u.) are determined such that they match the well

known dipole moment value 1.8546 D and yield quadrupole moments 0cc - - 2.319 D ,/k,

0aa = 2.635 D/_, and _bb -- --0.316 D/_, which are reasonable in comparison with

¢
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experimental values 0cc = - 2.50 D _, 0aa -----2.63 D _, and 0bb "- -- 0.13 D _.15 We adopt

the potential form given by (42) and search for a set of potential parameters that enables

us to obtain satisfactory results for several properties of a dilute H20 gas; e.g. the

absorption coefficient, the second virial coefficient, and the differential cross section.

G. General Features and Numerical Results for the Line Shapes

We have presented the line shape formulas applicable for both the pure rotational

band and vibrational bands. But, in the present study, the numerical calculations are

carried out for the former because not only is this the strongest band of H20 , but also most

of the continuum absorption measurements are performed in its high-frequency wing.

It is worthwhile to report general features of line shapes found from numerous test

calculations before we present more specified results. First of all, we find that differences

between X÷(w) and X_(w) calculated from the same potential are always less than numerical

errors. The formulas used to get X.(w) and X.(w) are the same, but the input files

representing the two distributions Ga( _1 (B, u, v) and G_(_) (B, u, v), respectively, are

different. However, these two distributions differ from each other only slightly. In fact, as

explained above, they exhibit the same profiles over two sensitive variables _ and u, and

are mirror images over the insensitive v. In cases that the potential contains cyclic

coordinates, it is easy to show analytically that these two distributions must yield the same

line shapes. For more general cases, given the fact that Ga(_) (D, u, v) and Ga( _ (B, u,

v) differ from each other as discussed above, we suspect that effects resulting from these

differences could cancel out in the averaging processes when the integrations are evaluated

by about 107 random selections. In the present study, we do not seek a general and

rigorous proof of this finding, rather we assume it. Then, we can draw the important

conclusion that by not considering the frequency detuning correction, the line shape

obtained from the formalism satisfying the detailed balance is symmetric. In other words,

if one does not consider the frequency detuning correction, one only needs to introduce one
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line shape function.

Second, we find that the calculated contributions from the frequency detuning

associated with I÷(w) are opposite to those associated with X.(w), and the differences

between their magnitudes are always less than numerical errors. This indicates that these

correction contributions have the same magnitudes, but with different signs; this is not

surprising since we have already noted our finding for X÷(w) and X_(w). In general, the

values of the correction contribution for X÷(w) are positive and those for X_(w) are negative

for w > 0 and vice versa for w < 0. In addition, we find that the correction contributions

are significant, especially at high frequencies, but they tend to become neghgible near the

line center.

Now, we are ready to present some results. We find that by adopting Aoo/k - 1.05

= 107 K, Poo = 0.245 J_, Ao}i/k = 2.0 = l0 s K, Poll = 0.36 J_, Aj{ H = 4.0 x 102 K, #]{H =

o.46 andB/k = 9.0. K,oneis abletoobt n and  uchthat

calculated absorption at 296 K can fit the experimental results in the spectral region 300 -

1100 cm "I very well. We note that because this window region is located at the

high-frequency side of the pure rotational band, the calculated absorption are mainly from

the contributionsof X÷Cw). The two lineshapes X÷Cw) and _.(w) at 296 K, together with

theirmean X(w), are plotted in Fig. 3. As shown in the figure,the magnitudes of _'÷(w)are

largerthan _'_(w)and the relativegaps between them increasesignificantlyas w increases.

The corresponding self-broadened absorption coefficientsin the spectralregion 300 - 1100
..

cm "Ibased on HITRAN 92 data are plottedin Fig.4, together with the experimental

resultsof Burch et al.16and some recent measurements of Cormier et al._z Using this

potential, we calculate the second virial coefficients at several temperatures is and compare

them with experimental data 19 in Fig. 5. In addition, the calculated differential cross

sections together with experimental data 2° are plotted in Fig. 6. We note that all these

physical quantities are associated with dilute water vapor, and as shown by these figures,

the agreements between the theoretical predictions and the laboratory measurements are
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good.

Based on the same potential model, we calculated the two line shapes X÷(w) and

X.(w) for several temperatures ranging from 220 K to 330 K which are of interest in the

atmospheric applications and the corresponding absorption coefficients. Some of X÷(w)

obtained for 220, 240, 260, 280, 300, and 320 K with frequencies raging from - 1600 em °1 to

1600 em .1 are presented in Fig. 7 and the corresponding _.(w) are their reflections about

the w -- 0 axis. As shown in the figure, these _÷(w) and X_(w) are asymmetric and their

magnitudes increase as the temperature decreases. We note that these line shapes _÷(w)

and Xo(w) presented here do not include a factor 1/w _ as shown in Eq. (13). If one wants to

compare them to other line shapes (e.g. a Lorentzian), one has to multiply them by the

factor 1/_. Also, the magnitude of _÷(w) or X_(w) as w-_ 0 should approach the Lorentzian

halfwidth, although the present theory is not valid in this limit. It is clear, however, that

the theoretical shapes are super-Lorentzian for the displacements up to around 400 em "1.

and then become sub-Lorentzian for larger displacements. In fact, the line shape must

approach zero at least as fast as an exponential. This can be shown from the analytieity of

the correlation function; the successive derivatives of C(t) in the t - 0 limit correspond to

moments of the line shape in frequency space. Because the derivative are all finite, this

implies that all the moments of the line shape are also finite and, therefore the line shape

must approach zero faster than any inverse power of w. In Fig. 8, we present all the

calculated absorption coefficients in the window region 600 - 1250 em °1. We note that for

a specified frequency w, we exclude completely any contribution from lines that are within

[w- 9.5 em "1, w ÷ 9.5 em °1] in the calculations As shown by Fig. 8, the negative

temperature dependence of self--continuum is clearly demonstrated.

III. DISCUSSIONS AND CONCLUSIONS

In comparison with our previous studies on the far-wing line shape, there are

several important advances which have been made in the present study. First of all, by

! -
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dearly distinguishing the sensitive and insensitive variables and by modifying the Monte

Carlo subroutine used previously to handle integrations whose volume is not rectangular,

the effectiveness of the important sampling is enhanced significantly. As a result, by

accounting for random selections the order of 107 (which is comparable to or slightly more

than that required for lower dimensionality cases), one is able to evaluate ll--dimensional

integrations.

Second, we have carried out numerical calculations based on the formalism which

satisfies the detailed balance principle exactly and has a-higher accuracy in the short-time

limit. As expected, this increases the difficulty because the evaluation of the integrands

requires more calculations. As shown by Eqs. (3) and (4), within this formalism the dipole

moment operator appears in formulas in such a way that it is always sandwiched by the

density matrix. However, these two operators have different characters: one depends on

the coordinates only while the other contains the differential operators. No matter what

kind of representation is chosen, the sandwiched operators require more loops to evaluate

their values. As in our previous studies, we use the coordinate representation because it

enable us to include more populated states; we also introduce the distribution functions and

store them in files because it enable us to obtain values of the integrand with less CPU

time. But, to calculate these distributions with a high cut--off Jmax requires long CUP

times. We note that for temperatures of interest in atmospheric applications, Jmax = 9.3 is

enough, but for higher temperatures, a higher Jmax would be necessary. With these input

files, to obtain values of the integrand becomes relatively easy. Combing the technique

mentioned above to reduce the number of random selection to the order of 107 , one is able

to complete the evaluation of ll--dimensional integrations and to obtain a line shape in one

day with one workstation.

Finally, by carrying out band averages in a more sophisticated way, we can

calculate the two line shape functions. In addition, the effects resulting from the frequency

detuning have beeh taken into account in the averaging processes. We note that except for
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the simplestsystem,e.g. COs - At, e the latter has not been done previously. In fact, most

of calculations are similar to those without including the frequency detuning correction,

except the integrand contains a derivative. As explained above, we have developed a

technique which enables one to overcome this obstacle and calculate the frequency detuning

corrections.
.:

Based on numerous test calculations of line shapes during the course of study, we

can draw several important conclusions. It is necessary to consider the frequency detuning

correction because the effect on the line shape is significant, especially in the

high-frequency region. However, this effect shows up only when one distinguishes the

positive and the negative resonance lines and carries out the band average over them

separately. In other words, we have demonstrated that the line shapes obtained from the

two band averages is asymmetric and we have found that this asymmetry results from the

frequency detuning effect, or more specifically, from the distribution of lines within the

band of interest. In addition, we find that for the pure rotational band the magnitudes of

X÷(w) are significantly larger than X_(w) for w > 0 and vice versa for w < 0, and these gaps

become larger as w increases. We note that the conclusion concerning the asymmetry

claimed here is applicable for the band average line shapes and has nothing to do with

individual lines.

Finally, we would like to make a few of comments on the vibrational bands. We

expect the main conclusions about the line shapes for the pure rotational band would

remain true, but some different features could show up because the contributions to X,(w)

and __(w) from the frequency detuning terms depend strongly on the band structure. We

expect that the more unevenly and the more widelythe lines are distributed within the

band of interest, the contributions come from the frequency detuning corrections will

increase and the more _÷(w) differs from Z.(w). It is well known that the line distributions

of the vibrational bands are quite different from that for the pure rotational one. The

former's lines are, more or less evenly, located on both sides of the band centers, but the

!
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latter's are always on the high-frequency side because the band center is zero. We note

that according to the definition, the average positive resonance frequency _ introduced here

is not the band center. But these two are very close for the vibrational bands and are quite

different for the pure rotational band. We expect that for the vibrational band the

frequency detuning corrections could become smaller. This means that X÷(w) and X.(w)

differ from each other by smaller amounts. Meanwhile, we could not draw any conclusion

about which magnitude is larger because this is related to the special structure of the pure

rotational band• It has been known for years that the line shapes for CO 2 derived from

experimental data are asymmetric and they are not the same for different bands. 21'22 So

far, there has been no theoretical explanation why the different bands have different shapes

without assuming that the interaction depends sensitively on the vibrational quantum

numbers which seems unlikely to be true. We think that both from the theoretical and

practical points of view, to investigate the lines shapes for different bands is an interesting

subject to pursue.
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LIST OF FIGURES

Fig. I. The two--dimensional distributionof Gac _)(a, _, 7) of H20 over the Euler angles

a and "yobtained at T = 296 K forJmax = 26. The values of the Euler angle/_ is

fixed and the four plotspresented here correspond to B - 5, 22, 38, and 50 degrees,

respectively.

Fig. 2. The two-dimensional distributionof Gac _r)(B,u, v) of H20 over the two sensitive

variablesB and u obtained at T - 296 K forJmax = 26. This distributionresults

from the averaging Ga¢ C._)(_,u, v) over the one insensitivevariable v. In contrast

with Fig. 1,a logarithmic coordinate isused forthe G_'cc._)(/_,u, v) axis.

Fig. 3. The self-broadened far-wing lineshape of H20 (in units of cm "Iatm "I)as a

function of frequency w (inunits of cm "I)for T = 296 K. The dashed curve

represents_'÷(w)calculatedfrom the positiveresonance lineaverage and the dotted

curve representsX_(w) calculatedfrom the negative resonance lineaverage. The

solid curve is X(w) which is the mean of X.(w) and X_(w).

Fig. 4. The calculated self-broadened absorption coefficient (in units of cm 2 molecule -1

atm "1) at T = 296 K in the 300 - 1100 cm "l spectral region is represented by a. For

comparison, the experimental values of Burch et. al are denoted by + and those

from Cormier et al. are denoted by n.

Fig. 5. The calculated second virial coefficients (in units of cm _ tool "x) as a function of

temperature is represented _by a solid line. The experimental data are denoted by n.

Fig. 6. The calculated differential cross section (in arbitrary units) as a function of the

laboratory scattering angle 0 is represented by a solid line. The experimental values

of Duquette are denoted by n.

Fig. 7, The self-broadened far-wing line shapes X÷(w) of H20 (in units of cm "1 arm "l) as a

function of frequency w (in units of cm "l) obtained for T = 220, 240,260, 280, 300,

and 320 K; these are represented by 6 curves in order from top to bottom. The

frequency w varies from- 1600 cm "1 to 1600 cm "l. The corresponding X_(w) are

/
i
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reflections of X)(_) about the _ = 0 axis.

Fig. 8. The self-broadened absorption coefficient (in units of cm _ molecule "1 atm "1) in the

window region 600- 1250 cm "1 calculated for T - 220, 230, 240, 250, 260, 270, 280,

290, 300, 310, 320, and 330 K in order from top to bottom. A cut--off 25cm "1 is used

to exclude completely any contribution of lines that are closer than this limit.

,- . - ___
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